Methionine sulfoxide is transported by high-affinity methionine and glutamine transport systems in Salmonella typhimurium.
نویسنده
چکیده
Three lines of evidence indicated that methionine sulfoxide is transported by the high-affinity methionine and glutamine transport systems in Salmonella typhimurium. First, methionine-requiring strains (metE) which have mutations affecting both of these transport systems (metP glnP) were unable to use methionine sulfoxide as a source of methionine. These strains could still grow on L-methionine because they possessed a low-affinity system (or systems) which transported L-methionine but not the sulfoxide. A methionine auxotroph with a defect only in the metP system, which was dependent upon the glnP+ system for the transport of methionine sulfoxide, was inhibited by L-glutamine because glutamine inhibited the transport of the sulfoxide by the glnP+ system. Second, a metE metP glnP strain could be transduced at either the metP or glnP genes to restore its ability to grow on methionine sulfoxide. Third, the transport of [14C]methionine sulfoxide was inhibited by methionine and by glutamine in the metP+ glnP+ strain. No transport was detected in the metP glnP double-mutant strain.
منابع مشابه
Methionine transport in wild-type and transport-defective mutants of Salmonella typhimurium.
Salmonella typhimurium possesses a permease specific for L-methionine (K, of 0.1 to 0-2 p ~ ) . Competition studies have shown that the permease has little or no affinity for the other L-amino acids commonly found in proteins. Methionine uptake was competitively inhibited by the growth inhj bitory analogues DLethionine, a-methyl-DL-methionine and DL-methionhe-DL-sulphoximine. Mutants resistant ...
متن کاملGrowth Characterization of Single and Double Salmonella Methionine Auxotroph Strains for Potential Vaccine Use in Poultry
Poultry meat is an important source of zoonotic Salmonella infection. Oral vaccination of chickens with live attenuated Salmonella during grow-out is an attractive approach to control Salmonella colonization in the chicken gastrointestinal tract. In this study, we report the construction of methionine-dependent and growth of Salmonella Typhimurium mutant strains with methionine auxotrophy (Δmet...
متن کاملMethionine Sulfoxide Reductases Are Essential for Virulence of Salmonella Typhimurium
Production of reactive oxygen species represents a fundamental innate defense against microbes in a diversity of host organisms. Oxidative stress, amongst others, converts peptidyl and free methionine to a mixture of methionine-S- (Met-S-SO) and methionine-R-sulfoxides (Met-R-SO). To cope with such oxidative damage, methionine sulfoxide reductases MsrA and MsrB are known to reduce MetSOs, the f...
متن کاملL-Methionine SR-sulfoximine-resistant glutamine synthetase from mutants of Salmonella typhimurium.
Two mutants of Salmonella typhimurium resistant to growth inhibition by the glutamine synthetase transition state analog, L-methionine SR-sulfoximine, were isolated and characterized. These mutants are glutamine bradytrophs and cannot use growth rate-limiting nitrogen sources. Although this phenotype resembles that of mutants with lesions in the regulatory gene for glutamine synthetase, glnG, t...
متن کاملOn the transport of tripeptide antibiotics in bacteria.
The two tripeptide antibiotics L-2-amino-4-methylphosphinobutyryl-alanyl-alanyl-alanine (L-phosphinothricyl-alanyl-alanine) and L-(N5-phosphono)methionine-S-sulfoximinyl-alanyl-alanine, both inhibitors of the glutamine synthetase, are transported into the cell of Escherichia coli K 12 via the oligopeptide transport system. The uptake by this system is proved first of all by cross-resistance wit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 148 2 شماره
صفحات -
تاریخ انتشار 1981